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LETTER TO THE EDITOR 

The reciprocal space properties of the electronic wave 
functions of the Penrose lattice 

K Niizeki and T Akamatsu 
Department of Physics, Tohoku University, Sendai, Japan 

Received 22 May 1990, in final form 6 July 1990 

Abstract. The spectral density of an electron in a Penrose lattice is investigated numerically. 
It is found that the profile of the spectral density of the energy versus the wavenumber plane 
exhibits a dispersion-relation-like pattern. The positions and the ‘intensities’ of the stationary 
points of the dispersion relation are accounted for by the ordinary structure factor, S(Q), 
and the ‘optical structure factor’ Sopt(Q); the Penrose lattice is a ‘non-Bravais type’ quasi- 
lattice and the eigenstates near the top of the band are considered to be ‘optical modes’. 

A quasicrystal is an unusual type of matter with a quasi-periodic positional long range 
order together with a non-crystallographic point symmetry (Schechtman et a1 1984, 
Steinhardt and Ostlund 1987). The present authors investigated the spectral density of 
an electron in an icosahedral quasicrystal (Niizeki and Akamatsu 1990: to be referred 
to as I). They found that the spectral density has several striking features: (i) it exhibits 
a dispersion-relation-like pattern, which is quasi-periodic in reciprocal space, and (ii) 
the positions and the intensities of the ‘quasi-dispersion-relation’ are well accounted for 
by the structure factor and its generalised versions, associated with the special wave 
vectors, which correspond to the zone-boundary wave vectors in the case of a periodic 
lattice. 

In this letter, we report the results of a similar investigation to I but in this case 
we use the Penrose lattice, which is a representative decagonal quasi-lattice in two 
dimensions (zD). The purpose of the investigation is to answer the questions: (i) do the 
properties of the electronic wave functions of a quasicrystal depend on the dimensionality 
of the system (note that the dimensionality is crucial in the localisation properties of 
the wave functions in a disordered system (Abrahams et a1 1979)), and (ii) do some 
differences in the structure between the Penrose lattice and the icosahedral quasi-lattice 
result in any qualitative difference in the spectral density between them. 

The electronic structure of condensed matter is strongly dependent on the atomic 
structure. Therefore, we begin by investigating the real space and the reciprocal space 
properties of the Penrose lattice (de Bruijn 1981 and Jaric 1986). A Penrose lattice L is 
the set of all the vertices of the Penrose tiling, i.e., a quasi-periodic tiling of the plane in 
terms of two kinds of rhombic tiles whose inner angles are multiples of n/5. L has a 
decagonal macroscopic point symmetry whose point group is DI0, the dihedral group 
of order 20. A side of a tile represents a ‘bond’ between the two relevant sites. We 
shall call the bond length a the lattice constant of L. The average coordination number 
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2 of sites of L is four and the area per site is given by So = a2 V'%-2 sin (n/5), with 

Lete, = (cos(iO),sin(iO)),wherei = 0-4with6' = 2n/5, betheunitvectorspointing 
to the vertices of a regular pentagon. Then the basis vectors of L are given by a, = ae,, 
i = 0-4. Since &e, = 0, only four of the five basis vectors are linearly independent over 
2; a, form an overcomplete set of basis vectors. A lattice point of L is represented as I = 
Z,n,a, with n, E 2. n, are determined up to an arbitrary common additive integer, so that 
they are determined uniquely if we impose the condition 0 S p(Z) s 4, wherep(Z) = Z,n, 
is called the level of 1. L has, in fact, no lattice points on level 0. 

A bond can be formed only between two sites whose levels differ by * 1. Therefore, 
L is divided into four interpenetrating sublattices Lp, p = 1-4. L is considered, in fact, 
to be a 'non-Bravais type' quasi-lattice. It is derived by the cut-and-projection method 
from a 4~ non-Bravais type decagonal lattice which has four lattice points per one unit 
cell corresponding to the four sublattices of L (Janssen 1986, Niizeki 1989). Lis  bipartite 
because it is decomposed into two interpenetrating sublattices L(l) = LlUL3 and L(2) = 
L2UL4. It can be shown that L(l) and L(2) have pentagonal point symmetry (D5). 

The basis vectors of the reciprocal lattice L* to L are given by a: = a*e, with a* = 
4n/(5a). The conjugate basisvectors to af are defined byci,* = a*e2,, where the subscript 
2i is assumed to be reduced in modulo 5 to an integer between 0 and 4. A reciprocal 
lattice vector (RLV), G (E L*),  and its conjugate counterpart, 6, are represented, 
respectively, as G = Z,n,af and G = Z:,n,dT with n, E 2 and 0 6 q(G) 6 4, where q(G) 
( = q(G)) = Z,n,. The pair of RLVS form a 4D RLV which belongs to a 4~ decagonal Bravais 
lattice in the 4~ reciprocal space. The 4D vector is near the real (reciprocal) space if 
[GI < l/a. G is indexed with the basis vectors as (n(fzln2n3124). 

The ten vectors +e,, i = 0-4, represent the vertices of the unit regular decagon 
centred on the origin of the reciprocal space. We shall denote by A (or Z) the ten 
equivalent directions parallel to *e, (or + (e,+l - e,)). An RLV on a A axis is indexed as 
G = (n0n1n2n2n1) and its level q(G) = no + 2nl + 2n2 can take any value between 0 and 
4. On the other hand, an RLV on a Z axis is indexed as G = (0nln2fi2fil) and q(G) = 0. 

t = (1 + v3)/2.  

The structure factor, S ( Q ) ,  of L is given (JariC 1986) by 

S(Q)  = E I4G) I (2x1 * S ( Q  - G)/So (1) 
GEL' 

where 5 = exp(2ni/5), Qp(Q) are the Fourier transforms of the Bruijn's pentagons, V p ,  
p = 1-4, and B = +4 ( t5z3SO)  withAp_( = vp(0)) being the areaof V,. o(G) is divided 
as o(G) = dl)(G) + &)(C),  where d')(G) and d2)(G) are the contributions from the 
two sublattices L(l) and L(2). 

Since the Penrose lattice is bipartite, we can define the 'optical structure factor', 
Sopt(Q), into which the two sublattices contribute in opposite phases. S,,,(Q) is given by 
a similar expression to the one for S ( Q )  but o(G) is replaced by o,,,(G) = 
d')(G) - d2)(G), It is important that S(Q) and S,,,(Q) have delta-function peaks at 
common positions and only the intensities are different. 

Vp(Q) becomes vanishingly small when IQ1 increases beyond l/a,  so that o(G) (or 
oopt(G)) becomes small when IGI 9 l/a. We consider, then, the limit of a(Q) (or oopt(G)) 
when 161 tends to 0. Since A l  =-A4, A2 = A ,  andA2(3)1= Z 'A~(~) ,  we can conclude that 
u(G) 5 1, -1/2 or 0 and a,,,(G) = 0, (42 s in(2~/5))-  or (2 sin(n/5))-' according to 
whether q = 0, t 1 or k 2  mod 5, respectively. If d')(G) and d2)(G) are constructive in 
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Figure 1. The structure factor S(Q)  ( a )  and the optical structure factor S,,,(Q) ( b )  of the 
Penrose lattice. The area of a circle is proportional to the intensity. A circle with an intensity 
lower than 2% of the full intensity is neglected. The centre is the origin of the reciprocal 
space. The horizontal axis is parallel to a A axis a26 the vertical_one to a Z axis. The strongest 
spot of S(Q)  on a A (or X) axis is indexed as (4133 1) (or (03223)). On the otherhand, the 
innermost (or outermost) spot of S,,,(Q) on a A axis is indexed as (11001) (or (52332)). 

a(G), they are destructive in uopt(G) and vice versa, so that the magnitudes of a(G) and 
a0,,(G) are complementary. 

We show S ( Q )  and Sop,@) in figures l(a) and ( b ) ,  respectively. We can see quasi- 
periodic distributions of Bragg spots with point symmetry Dlo. The high-intensity Bragg 
spots and the medium-intensity ones are located on RLVS whose levels are 0 or ? 1 mod 
5 for S ( Q )  but ? 1 or ?2 mod 5 for Sopt(Q). A high-intensity Bragg spot of S ( Q )  is located 
in a region where Bragg spots of Sop@) are weak and vice versa. S(Q)  has high-intensity 
spots on both the A and 

Each Bragg spot of S ( Q )  corresponds to a r-point in the reciprocal space in the 
extended-zone scheme of a periodic Bravais lattice. The I?-points of a quasi-lattice differ 
from those of a periodic lattice in that different r-points have different intensities and 
that they are distributed densely, though most of them have vanishingly small intensities. 

We now turn our attention to the one-electron states of a Penrose lattice. We take a 
finite but macroscopic piece of the Penrose lattice, whose lattice points are numbered 
arbitrarily from 1 to N .  We assume that the Hamiltonian is given in the tight-binding 
approximation as 

axes but Sop@) only has them on the A axis. 

H = - E t(Ii>(jI + Ij>(iI) (3) 
(id 

where t stands for the transfer integral between two sites i, j connected by a 'bond' and 
/i) an s-orbital on the site i. 

Let us denote the eigen energies of H by E l ,  E2,  . . . , EN and the corresponding 
normalised eigenvectors by q(l), ~ ( ~ 1 ,  . . . , q(w. Then, the spectral density is represented 
as 

where 

I Q )  = N-'/2 exp(iQ Zi)ii) 
i 

stands for a normalised plane-wave state. The dependence of IQ) on Q is not periodic 
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Figure 2. The spectral density along a A axis. The area of a circle is proportional to the 
Fourier intensity l(QIq("))1*. Low-intensity signals are cut-off at 0.004. The wavenumber is 
quantised to multiples of AQ = 2n/(D sin(2z/5)). The ordinate is scaled in units of W (= 
4.23 t ) ,  half of the band width. The wavenumber at the right hand end of the abscissa is equal 
to 144AQ (=11.1 (2n/a)). 

but quasi-periodic in contrast to the case of a periodic lattice. Note that IQ) = IQ + G )  if 
G is an RLV satisfying the conditions 161 4 1 /u  and q(G) = 0. 

We investigate p ( Q ,  E )  by the numerical method. In order to supress the surface 
effects, we take a unit cell of a 'periodic Penrose lattice' and employ the cyclic boundary 
condition (Tsunetsugu et a f  1986, Okabe and Niizeki 1988). The size N of our sample is 
1364. The unit cell is a rhombus similar to the fat tile and the length of the side is given 
by D = 2ut7 sin(n/5) ( - 3 4 . 1 ~ ) .  On account of the cyclic boundary condition, Q in (4) 
can only take discrete values determined by the unit cell. 

We do not present the figure of the density of states (Choy 1985), whose shape is 
similar to an inverted funnel. Half the band width W is about 4.23 t ,  which is slightly 
larger than Zt ( = 4 t ) ,  the value in the quasicrystalline approximation. 

We show in figure 2 the spectral density along a A axis (exactly speaking, the figure 
shows a pseudo-spectral-density because the width of the delta functions is chosen to be 
smaller than the average level distance). We can clearly observe a dispersion-relation- 
like pattern, which we shall call a quasi-dispersion-relation (QDR). The parabolic disper- 
sion minimum located on the origin recurs quasi-periodically with different intensities. 
The positions and the intensities agree well with those of the Bragg spots of S(Q) as given 
in figure l(a). 
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We find that parabolic dispersion maxima derived from the top of the band also 
appear quasi-periodically. The positions and the intensities agree well with those of the 
‘Bragg spots’ of S,,,(Q) as given in figure l(b). This is a reasonable result because the 
eigenstates near the top of the band are antibonding-like with respect to the nearest- 
neighbour interactions. The fact that the dispersion maxima derived from the top of the 
band appear at r-points is in sharp contrast to the case of the 3~ icosahedral quasi- 
lattice where they appear at special wave vectors corresponding to zone-boundary wave 
vectors in the case of a periodic lattice (see I). Since the Penrose lattice is a non-Bravais 
type quasi-lattice, the QDR near the top of the band can be considered to be due to 
‘optical modes’. 

We see that the QDR is disordered in a region around the centre of the band ( E  = 0). 
A close investigation of the real-space wave functions in that region revealed that they 
have a strong tendency towards localisation. In particular, there exist localised states 
called ‘confinedstates’, which are degenerate at E = 0; aconfinedstate isstrictly confined 
to a region with a particular structure and the ratio of the number of confined states to 
the total number of states is finite (Semba 1985, Kohmoto and Sutherland 1986). 
Therefore, the apparent gaps of the QDR are due to the localised states and almost 
localised states but not to any zone-boundary wave vector; the low intensity signals are 
lost on account of the cut-off. 

We have also investigated p(Q,  E )  along a 2 axis and confirmed that parabolic 
dispersion minima appear at appropriate positions and intensities in agreement with the 
distribution of r-points along the same axis (see figure l(a)). On the other hand, the 
dispersion maxima along this axis are not due to r-points associated with the top of the 
band but to other kinds of special points; this is because the optical structure factor, 
Sopt(Q), has no intensities on the 2 axis. 

In conclusion, the electronic spectral density of the Penrose lattice exhibits a similar 
dispersion-relation-like pattern to that of the icosahedral quasi-lattice but the former 
has dispersion maxima derived from ‘optical modes’ because the Penrose lattice is a non- 
Bravais type quasi-lattice composed of four Bravais sublattices. 

This work is supported by a Grant-in-Aid for Science Research from the Ministry of 
Education, Science and Culture. 
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